Development standards and practices for ML codebases
Keep data processing, model training, evaluation, and inference in separate modules:
project/
├── data/
│ ├── preprocessing.py
│ ├── feature_engineering.py
│ └── validation.py
├── models/
│ ├── architecture.py
│ ├── training.py
│ └── inference.py
├── evaluation/
│ ├── metrics.py
│ └── validation.py
└── config/
└── config.yamlUse configuration files (YAML, JSON) for hyperparameters, paths, and settings:
Log all experiments with metadata: